

Flask-Uploads

Flask-Uploads allows your application to flexibly and efficiently handle file
uploading and serving the uploaded files.
You can create different sets of uploads - one for document attachments, one
for photos, etc. - and the application can be configured to save them all in
different places and to generate different URLs for them.

	Configuration

	Upload Sets

	App Configuration

	File Upload Forms

	API Documentation
	Upload Sets

	Application Setup

	Extension Constants

	Testing Utilities

	Backwards Compatibility
	Version 0.1.3

	Version 0.1.1

Configuration

If you’re just deploying an application that uses Flask-Uploads, you can
customize its behavior extensively from the application’s configuration.
Check the application’s documentation or source code to see how it loads its
configuration.

The settings below apply for a single set of uploads, replacing FILES with
the name of the set (i.e. PHOTOS, ATTACHMENTS):

	UPLOADED_FILES_DEST

	This indicates the directory uploaded files will be saved to.

	UPLOADED_FILES_URL

	If you have a server set up to serve the files in this set, this should be
the URL they are publicly accessible from. Include the trailing slash.

	UPLOADED_FILES_ALLOW

	This lets you allow file extensions not allowed by the upload set in the
code.

	UPLOADED_FILES_DENY

	This lets you deny file extensions allowed by the upload set in the code.

To save on configuration time, there are two settings you can provide
that apply as “defaults” if you don’t provide the proper settings otherwise.

	UPLOADS_DEFAULT_DEST

	If you set this, then if an upload set’s destination isn’t otherwise
declared, then its uploads will be stored in a subdirectory of this
directory. For example, if you set this to /var/uploads, then a set
named photos will store its uploads in /var/uploads/photos.

	UPLOADS_DEFAULT_URL

	If you have a server set up to serve from UPLOADS_DEFAULT_DEST, then
set the server’s base URL here. Continuing the example above, if
/var/uploads is accessible from http://localhost:5001, then you
would set this to http://localhost:5001/ and URLs for the photos set
would start with http://localhost:5001/photos. Include the trailing
slash.

However, you don’t have to set any of the _URL settings - if you don’t,
then they will be served internally by Flask. They are just there so if you
have heavy upload traffic, you can have a faster production server like Nginx
or Lighttpd serve the uploads.

If you are running Flask 0.6 or greater, or the application uses
patch_request_class(app, None), then you can set MAX_CONTENT_LENGTH [http://flask.pocoo.org/docs/config/#MAX_CONTENT_LENGTH] to
limit the size of uploaded files.

Upload Sets

An “upload set” is a single collection of files. You just declare them in the
code:

photos = UploadSet('photos', IMAGES)

And then you can use the save method to save uploaded files and
path and url to access them. For example:

@app.route('/upload', methods=['GET', 'POST'])
def upload():
 if request.method == 'POST' and 'photo' in request.files:
 filename = photos.save(request.files['photo'])
 rec = Photo(filename=filename, user=g.user.id)
 rec.store()
 flash("Photo saved.")
 return redirect(url_for('show', id=rec.id))
 return render_template('upload.html')

@app.route('/photo/<id>')
def show(id):
 photo = Photo.load(id)
 if photo is None:
 abort(404)
 url = photos.url(photo.filename)
 return render_template('show.html', url=url, photo=photo)

If you have a “default location” for storing uploads - for example, if your
app has an “instance” directory like Zine [http://zine.pocoo.org/] and uploads should be saved to
the instance directory’s uploads folder - you can pass a default_dest
callable to the set constructor. It takes the application as its argument.
For example:

media = UploadSet('media', default_dest=lambda app: app.instance_path)

This won’t prevent a different destination from being set in the config,
though. It’s just to save your users a little configuration time.

App Configuration

An upload set’s configuration is stored on an app. That way, you can have
upload sets being used by multiple apps at once. You use the
configure_uploads function to load the configuration for the upload sets.
You pass in the app and all of the upload sets you want configured. Calling
configure_uploads more than once is safe.

configure_uploads(app, (photos, media))

If your app has a factory function, that is a good place to call this
function.

By default, though, Flask doesn’t put any limits on the size of the uploaded
data. To protect your application, you can use patch_request_class. If you
call it with None [https://docs.python.org/2/library/constants.html#None] as the second parameter, it will use the
MAX_CONTENT_LENGTH [http://flask.pocoo.org/docs/config/#MAX_CONTENT_LENGTH] setting to determine how large the upload can be.

patch_request_class(app, None)

You can also call it with a number to set an absolute limit, but that only
exists for backwards compatibility reasons and is not recommended for
production use. In addition, it’s not necessary for Flask 0.6 or greater, so
if your application is only intended to run on Flask 0.6, you don’t need it.

File Upload Forms

To actually upload the files, you need to properly set up your form. A form
that uploads files needs to have its method set to POST and its enctype
set to multipart/form-data. If it’s set to GET, it won’t work at all, and
if you don’t set the enctype, only the filename will be transferred.

The field itself should be an <input type=file>.

<form method=POST enctype=multipart/form-data action="{{ url_for('upload') }}">
 ...
 <input type=file name=photo>
 ...
</form>

API Documentation

This documentation is generated directly from the source code.

Upload Sets

Application Setup

Extension Constants

These are some default sets of extensions you can pass to the UploadSet
constructor.

Testing Utilities

Backwards Compatibility

Version 0.1.3

	The _uploads module/blueprint will not be registered if it is not needed
to serve uploads.

Version 0.1.1

	patch_request_class now changes max_content_length instead of
max_form_memory_size.

Index

 nav.xhtml

 Table of Contents

 		Flask-Uploads

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

